191.5°. The infrared spectrum showed strong bands at 1590 and 1640 cm.⁻¹ (amidine). This compound was insoluble in cold water, and was converted by hydrochloric acid into a sparingly soluble salt, m.p. 248°, which we were not able to obtain analytically pure.

Anal. Calcd. for $C_{22}H_{17}N_3$: C, 81.80; H, 5.32; N, 13.01. Found: C, 81.68; H, 5.39; N, 12.88.

In another experiment, 0.470 g. of IV was added slowly to 5 ml. of phenylacetonitrile in which 0.046 g. of sodium had been dissolved. There was lively gas evolution. When the dark red reaction mixture had become quiet, it was heated at 100° for about 10 min., cooled, and diluted with petroleum ether. The oil that separated soon became a yellow solid (XIII). It was slurried with alcohol and sucked dry; wt. 0.40 g., m.p. $254-258^{\circ}$ dec. It was insoluble even in boiling water, but dissolved in cold hydrochloric acid to give an orange solution, and slightly in hot alcohol, from which an analytical sample, yellow needlets, m.p. 258° , was obtained. The infrared spectrum was similar to that of XII.

Anal. Calcd. for $C_{22}H_{17}N_8$: C, 81.80; H, 5.32; N, 13.01. Found: C, 81.63; H, 5.33; N, 12.85.

Interconversion of Compounds XII and XIII.—When 100 mg. of XIII was heated for an hour on a steam bath with concentrated hydrochloric acid, in which it dissolved, and the solution then concentrated, 70 mg. of a yellow hydrochloride, m.p. 240° dec., was obtained. There was no depression of melting point when mixed with XII hydrochloride, and XII itself was obtained by treatment with sodium bicarbonate solution. When 0.10 g. of XII was boiled for ca.5 min. with a solution of 3 g. of potassium hydroxide in 12 ml. of 50% ethanol and then cooled, 80 mg. of yellow solid, m.p. 200–210°, was obtained. Recrystallization from ethanol gave pure XIII, m.p. and mixture m.p. 254°.

Hydrolysis of XII and XIII.—When a solution of 0.20 g. of XIII in 10 ml. of concentrated hydrochloric acid was boiled for 2 min., the orange color faded and a yellow-green solid began to separate before cooling. After cooling, the solid was filtered off, washed well with water, and recrystallized from benzene; yellow-green needles, m.p. 218° (reported³⁰ for diphenylmaleimide, m.p. 217°), wt. 0.11 g. (72%). A portion was boiled briefly with 25% potassium hydroxide solution for a few minutes, and then acidified. The colorless substance, m.p. 156°, that separated³¹ was identified as diphenylmaleic anhydride (reported m.p. 156–157°).

Attempts to hydrolyze XII by boiling it with concentrated hydrochloric acid alone, or in ethanol or acetic acid, or by heating it with sirupy phosphoric acid, yielded only starting material or its hydrochloride.

Acknowledgment.—The authors wish to acknowledge the enthusiastic help of Mr. G. D. Mendenhall, who contributed materially to the progress of the work.

(30) P. Mendelssohn-Bartholdy, Ber., 40, 4400 (1907).
(31) F. R. Japp and G. D. Lander, J. Chem. Soc., 71, 123 (1897).

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, SCHOOL OF ENGINEERING AND SCIENCE, PRATT INSTITUTE, BROOKLYN 5, N. Y.]

Electrical Effects of ortho-Substituents in Pyridines and Quinolines

By MARVIN CHARTON

Received November 21, 1963

Correlation of the σ_0 constants proposed by various workers to represent the electrical effects of o-substituents with σ_1 , σ_m , and σ_p constants shows that in general $\sigma_0 = m\sigma_p + c$ (1) represents the "normal" electrical effect of o-substituents. By contrast, o-substituted pyridines, quinolines, and isoquinolines show an "abnormal" electrical effect. Correlation of rate and equilibrium data for these systems with σ_1 , σ_m , and σ_p constants shows that σ_m and/or σ_1 generally give the best results. This behavior is in accord with the electrical effect of osubstituents on deuterium-protium exchange at the o-position in substituted benzenes. It is proposed that this behavior is due to a short range localized electrostatic effect. These results invalidate the use of the 2substituted pyridines as a reference series for the "normal" ortho electrical effect.

Brown and McDaniel¹ have suggested that ionization constants of 2-substituted pyridines represent a good reference series for the electrical effects of o-substituents as, of course, steric effects in this series are minimal. This approach has been criticized by Roberts and Carboni,² who felt that the electrical effects in this series would not be equivalent to those generally found in o-substituted reaction series. Hall, Piccolini, and Roberts³ found that rates of deuterium-protium exchange in substituted benzenes are dependent on a localized electrostatic effect which they believed to be a combination of inductive and field effects. They found no significant resonance effect. Shatenstein⁴ noted that these data, combined with some of his own work, when plotted against σ_{I} constants⁵ gave a linear relationship.

The analogy between exchange reactions in benzene and the ionization of pyridine and quinoline bases is obvious. Thus, for example, Huisgen and co-workers⁶ report a linear relationship between partial rate factors for benzyne formation of 2-, 3-, or 4-substituted bromobenzenes with the pK_a 's of the corresponding pyridinium ions. It therefore seemed reasonable to determine whether substituent effects in o-substituted pyridines and quinolines resemble those observed for deuterium-protium exchanges in the 2-position in substituted benzenes, or whether they resemble those usually found in o-substituted benzene reaction series. In view of the proposal that the pyridines be used as a reference series for the electrical effects of o-substituents, this question is certainly significant.

The "Normal" Electrical Effects of *o*-Substituents.— Our study of the application of the Hammett equation⁷⁻⁹ to *o*-substituted series¹⁰ in which the reaction site is joined to the ring by some intervening group has shown that in these series the σ_p constants provide adequate representation of the electrical effects of *o*-substituents. To verify this point with regard to series in which the reaction site is directly joined to the ring, the σ_0 values proposed by a number of authors to re-

(10) M. Charton, Can. J. Chem., 38, 2493 (1960).

⁽¹⁾ D. H. McDaniel and H. C. Brown, J. Am. Chem. Soc., 77, 3756 (1955).

⁽²⁾ J. D. Roberts and R. A. Carboni, *ibid.*, 77, 5534 (1955).

⁽³⁾ G. E. Hall, R. Piccolini, and J. D. Roberts, *ibid.*, 77, 4540 (1955);

<sup>G. E. Hall, E. M. Libby, and E. L. James, J. Org. Chem., 28, 311 (1963).
(4) A. I. Shatenshtein, "Isotopic Exchange and the Replacement of Hydrogen in Organic Compounds," Consultants Bureau, New York, N. Y.,</sup>

^{1962;} A. I. Shatenshtein, Tetrahedron, 18, 95 (1962). (5) P. W. Teft. Ir. and I. C. Lawis, I. Am. Chem. Soc. 80, 2426 (1958).

⁽⁵⁾ R. W. Taft, Jr., and I. C. Lewis, J. Am. Chem. Soc., 80, 2436 (1958).
(6) R. Huisgen, W. Mack, K. Herbig, N. Ott, and E. Anneser, Chem. Ber., 93, 412 (1960).

⁽⁷⁾ L. P. Hammett, "Physical Organic Chemistry," McGraw-Hill Book Co., Inc., New York, N. Y., 1940, p. 184.

⁽⁸⁾ H. H. Jaffé, Chem. Rev., 53, 191 (1953).

⁽⁹⁾ R. W. Taft, Jr., in M. S. Newman, "Steric Effects in Organic Chemistry," John Wiley and Sons, Inc., New York, N. Y., 1956; V. Palm, *Russian Chem. Rev.*, **31**, 471 (1961); P. R. Wells, *Chem. Rev.*, **63**, 171 (1963).

MARVIN CHARTON

TABLE I

				111000	*				
$oldsymbol{\sigma}_0$ Substituent Constants									
A. De	fined from [log (k	$(x/k_{\rm H})_{\rm B} - \log ($	$[k_{\rm X}/k_{\rm H})_{\rm A}]$ when	e k's are rate o	constants for b	ase- and acie	d-catalyzed	hydrolyses,	respectively,
	of 2-substituted ethyl benzoates ⁴								
х	MeO	EtO	Me	н	F	C1	Br	I	NO_2
σ_0	-0.39	-0.35	-0.17	0.0	0.24	0.20	0.21	0.21	0.80
	B. Defined from ionization constants of 2-substituted benzoic acids ^b								
х	ОН	MeO	EtO	Me	F	Cl	Br	NO_2	
σ_0	-0.38	-0.27	-0.25	-0.14	0.06	0.21	0.20	0.76	
C.	Defined from eq	uilibrium consta	ants for associa	tion of 2-subst	ituted benzoic	acids with 1	,3-diphenylg	uanidine in	benzene ^c
x	NH_2	OH	Me	C1	NO_2				
σ_0	-0.37	-0.15	-0.15	0.38	1.00				
		D. I	Defined from in	frared spectra	of 2-substitute	d benzonitril	e^{d}		
x	NH_2	ОН	Me	C1	NO_2				
σ_0	-0.35	-0.2	-0.1	0.4	0.95				
E.	Defined from ra	ates of vapor pl	nase unimolecu	lar homogeneo	us thermal dec	omposition o	of 2-substitu	ted alkyl be	nzoates ^e
х	MeO	Me	н	F	C1	NO_2			
σ_0	-0.53	-0.16	0.0	0.16	0.31	0.94			
F.	Defined from rat	es of base-catal	yzed hydrolysi	s of 2-substitut	ed ethyl benzo	ates in 80%	v./v. metha	anol–water a	it 100.8° ⁷
x	Me	Et	F	C1	Br	I			
σ_0	0.003	0.036	0.291	0.219	0.296	0.341			
G. Defined from ν_{OH} for 2-hydroxy-2'-substituted benzanils ^a									
x	C1	F	н	Me	MeO				
σ_0	0.22	0.17	0.0	-0.14	-0.34				
^a Ref	8, Taft. ^b A. C.	Farthing and B	. Nam, "Steric	Effects in Con	jugated Systen	is,'' Academ	ic Press, Inc	., New Yorl	, N. Y., 1958,
	p. 131. ^c M. M. Davis and H. B. Hetzer, J. Research Natl. Bur. Standards, 60, 569 (1958). ^d H. W. Thompson and G. Stell, Trans.								

^a Ref. 8, Taft. ^b A. C. Farthing and B. Nam, "Steric Effects in Conjugated Systems," Academic Press, Inc., New York, N. Y., 1958, p. 131. ^c M. M. Davis and H. B. Hetzer, J. Research Natl. Bur. Standards, **60**, 569 (1958). ^d H. W. Thompson and G. Stell, Trans. Faraday Soc., **52**, 1451 (1956). ^e G. G. Smith and D. A. K. Jones, Abstracts, 144th National Meeting of the American Chemical Society, 1963, p. 58M. ^f N. B. Chapman, J. Shorter, and J. H. P. Utley, J. Chem. Soc., 1291 (1963). ^e A. W. Baker and A. T. Shulgin, J. Am. Chem. Soc., **81**, 1523 (1959).

Table II

Results^{*a*} of Correlation of σ_0 with σ_I , σ_m , σ_p , σ_p ⁺ Series m r t 5 с n А Ι 1.100.699 2.5850.279-0.2769 m 1.32.8754.779. 189 255-1.09 11.300890 0242 .974 р в Ι 1.29.741 2.702269-4258 m 1.39 .913 5.482163 _ .338 01730.978.999 56.54----.694р С 1.80 . 894 3.456 286363 $\mathbf{5}$ Ι -131 m 1.54.979 8.267 1570.973.983 9.322116180р D 1.703.099300 .335 $\overline{\mathbf{5}}$.873Ι 965 6.333 162. 144 m 1.450.943 989 11.520915 .177 p Е 682 1.8654052426 Ι 1.19 1.65.879 3.691 .165 322 m . 108 0165 р 1.30. 981 10.040.953.986 11.64.093158p⁺ F 0531 6 5019254.874 .0610 Ι 608 949 6.0410505 .0643m р 658 908 4.345.0672146G 4955631.181 219.136 5 Ι _ .780680 1.607 194. 137 ın 966 6.4520687 .159р 1.14

 ${}^{a}m =$ slope, r = correlation coefficient, t = "student" t test, s = standard deviation, c = intercept, n = number of points in series.

present electrical effects of o-substituents were examined. We have attempted correlations of these σ_0 values with σ_1 , σ_m , and σ_p values. The σ_0 values studied are given in Table I; results of the correlations in Table II. The σ_m and σ_p values used throughout this work were taken from the compilation of McDaniel and Brown¹¹ when possible; otherwise they are from Jaffé's comprehensive review unless otherwise noted. σ_1

(11) D. H. McDaniel and H. C. Brown, J. Org. Chem., 23, 420 (1958).

values used are from our compilation 12 when possible, otherwise from Taft. 5

The results given in Table II show that a clear-cut superiority in correlation of σ_0 by σ_p is obtained in series A, B, D, E, and G. In series C, although best correlation is still obtained with σ_p , the difference in results between σ_p and σ_m is barely significant. Only in series F do the results indicate decidedly inferior correlation with σ_p . It must be noted that this series has the smallest variation in substituent type, including only alkyl and halogen substituents.

The results obtained show clearly that, in general, the electrical effects of o-substituents are linearly related to those of p-substituents

$$\sigma_0 = m\sigma_{\rm p} + c \tag{1}$$

These results are in accord with the suggestion made by Jaffé and co-workers¹³ that *o*- and *p*-substituents should have comparable electrical effects, and with the use by other workers of σ_p values to represent the electrical effect of *o*-substituents.¹⁴

The Electrical Effect of *o*-Substituents in Pyridines, Quinolines, and Isoquinolines.—To determine the nature of the electrical effect of *o*-substituents in 2substituted pyridines and quinolines we have correlated data (extant in the literature) for ionization constants of 2-substituted pyridines in water at 25° (series 1) and 20° (series 2), and in 50% aqueous ethanol at 25° (series 3), 2-substituted quinolines in water at 25° (series 4), and 1-substituted-isoquinolines in water

⁽¹²⁾ M. Charton, Abstracts, 144th National Meeting of the American Chemical Society, Los Angeles, Calif., 1963, p. 37P.

⁽¹³⁾ H. H. Jaffé, L. D. Freedman, and G. O. Doak, J. Am. Chem. Soc., 76, 1548 (1954).

⁽¹⁴⁾ J. Vene and J. Tirouflet, Bull. soc. chim. France, 220 (1954); G. S. Hammond, C. E. Boozer, C. E. Hamilton, and J. E. Sen, J. Am. Chem. Soc., 77, 3238 (1955).

at 20° (series 5) with the Hammett equation using the $\sigma_{\rm I}$, $\sigma_{\rm m}$, and $\sigma_{\rm p}$ constants. The rates of reaction of 2substituted pyridines with methyl iodide at 25° in nitrobenzene (series 6) and with perbenzoic acid in nitrobenzene (series 7) have also been studied. For purposes of comparison, ionization constants of 3- or 4-substituted pyridines in water at 20° (series 8), or 3- or 4-substituted quinolines in water at 25° (series 9) and in 10% aqueous ethanol at 25° (series 10), 4substituted quinolines in 50% aqueous ethanol at 20° (series 11), and 2-substituted pyridine N-oxides in water at 25° (series 12) were correlated with the Hammett equation using σ_m or σ_p as appropriate. Rates of reaction of 3- or 4-substituted pyridines with methyl iodide at 25° in nitrobenzene (series 13) and with perbenzoic acid in nitrobenzene at 25° (series 14) were also considered. The data used are given in Table III. The results of the correlations are given in Table IV. Amino substituents have been included in the series studied as it has been reported on the basis of infrared and ultraviolet spectra, and ionization constants, that these compounds exist predominantly as the amino rather than the imino tautomer.15

Pyridines.—The ionization constants of series 1, 2, and 3 and the rate constants of series 6 and 7 all show good correlation with σ_m and all series but series 2 also show good correlation with σ_{I} . However, only series 2 includes the amino substituent. As σ_{I} and σ_{m} for NH_2 are 0.10 and -0.16, respectively, this substituent should emphasize any difference between correlation with σ_{I} and correlation with σ_{m} . It must also be noted that series 3, 6, and 7 are very limited in regard to diversity of substituent type as they contain only H, alkyl, and halo substituents. The σ_p constant in all cases show poor correlation. By contrast, Jaffé and Doak¹⁶ have studied the correlation of the ionization constants of 3- or 4-substituted pyridines in water at about 25° with the Hammett equation using the appropriate $\sigma_{\rm m}$ and σ_p values and they report $\rho = 5.714$, r = 0.989, s = 0.196, n = 12. We have examined the correlation of the ionization constants of 3- or 4-substituted pyridines in water at 20° (series 8), again using $\sigma_{\rm m}$ and $\sigma_{\rm p}$ as appropriate, and find excellent correlation. The rate constants for the reaction of 3- or 4-substituted pyridines with methyl iodide at 25° and with perbenzoic acid in nitrobenzene at 25° also give good correlation with the appropriate σ_m and σ_p values. These results show that substituents in the 3- or 4-position on a pyridine ring have the expected electrical effects, whereas substituents in the 2-position behave abnormally and do not show the type of electrical effect customarily exerted by an o-substituent.

We have also examined the ionization constants of 2substituted pyridine N-oxides in water at 20° (series 12). In this series the reaction site is the oxygen atom whereas in the other series studied the ring nitrogen atom is the reaction site. By far the best correlation in this series was with σ_p constants, indicating a "normal" electrical effect for the *o*-substituent.

Quinolines and Isoquinolines.—The ionization constants of 2-substituted quinolines in water at 25° (series 4) show best correlation with σ_m and worst with $\sigma_{\rm p}$. For comparison, we have examined the ionization constants of 3- or 4-substituted quinolines under varying conditions (series 9,10,11) using $\sigma_{\rm m}$ and $\sigma_{\rm p}$ constants as appropriate. Good correlations are obtained showing that substituents in the 3- or 4-position of the quinoline ring exert their normal effect. Substituents in the 2-position on the quinoline ring show an abnormal electrical effect in accord with the results obtained for pyridines.

The ionization constants of isoquinolines (series 5) also show best correlation with σ_m , in accord with the results obtained for pyridines and quinolines.

Discussion

The preceding results seem to have clearly established the following points: (1) The "normal" electrical effect of a substituent in an o-position is proportional to its effect in the p-position. (2) The electrical effect on an o-substituent on reactions involving the lone pair electrons of the nitrogen atom in pyridine, quinoline, and isoquinoline is "abnormal"; it is best represented by the σ_{I} , or more probably the σ_{m} substituent constant. (3) Pyridines and quinolines which are m- or *p*-substituted show the expected electrical effects. (4) *o*-Substituted pyridines in which the ring nitrogen atom (or any other ring atom) is not the reaction site show a "normal" electrical effect. (5) The electrical effect exerted by o-substituents on reactions involving the lone pair electrons of the nitrogen atom in pyridines, quinolines, and isoquinolines is comparable to the electrical effect of o-substituents on protium-deuterium exchange in substituted benzenes or on the partial rate factors for benzyne formation in substituted bromobenzenes. This exchange presumably involves a phenide ion in which the reaction site is the carbon atom bearing the lone pair electrons.

One possible explanation of these observations is that they are due to lack of resonance interaction between the π -orbitals of the ring and the lone pair electrons involved in the reactions. This proposal does not account for the normal behavior of 4-substituted pyridines and quinolines, nor does it account for the normal behavior of 2- or 4-substituted benzene series in which ring and reaction site are separated by some group Z which does not permit resonance interaction between ring and reaction site (*e.g.*, $Z = CH_2CH_2$, OCH₂, SCH₂, SeCH₂).

A more probable explanation of the observed substituent effects is that a short range localized electrostatic effect is operating in these systems. Such an effect would be significant over only one bond length. We can envisage its operation by considering the composition of electrical substituent effects. The total electrical effect of a substituent, $\sigma_{\rm T}$, may be represented, according to Taft, by the equation

$$\sigma_{\rm T} = \lambda \sigma_{\rm I} + \delta \sigma_{\rm R} \tag{2}$$

where σ_I represents an "inductive" effect and σ_R the resonance effect; λ and δ are empirical parameters. The composition of σ_I may be represented by

$$\lambda \sigma_{\rm I} = \phi \sigma_{\rm f} + i \sigma_{\rm i} \tag{3}$$

where $\sigma_{\rm f}$ represents the field or direct effect and $\sigma_{\rm i}$ the true inductive effect; ϕ and *i* are empirical parameters. We believe that the $\sigma_{\rm I}$ values of Taft actually repre-

⁽¹⁵⁾ A. R. Katritzky and J. M. Lagowski, Advan. in Heterocyclic Chem., 1, 339 (1963).

⁽¹⁶⁾ H. H. Jaffé and G. O. Doak, J. Am. Chem. Soc., 77, 4444 (1955).

MARVIN CHARTON

				Т	able III					
				Data Used	IN CORRELAT	TIONS				
		1.	Ionization co	onstants of 2-	-substituted p	yridines in H	I₂O at 25°			
x	MeO	PhCH ₂	C_2H_3	Н	F	C1	Br	I	Me	Et
pK_a	3.06	${{5.13}_{b}}$	4.98 b	5.17 ¢	- 0.44	0.72	0.90 ¢	1.82 ¢	5.97 a	${{5.97}\atop{_{a}}}$
Ref. X	Pr	i-Pr	t-Bu							
pK_{a}	5.97	5.83	5.76							
Ref.	d	d	d							
		2.	Ionization co	onstants of 2-	substituted p	vridines in H	l₀O at 20°			
х	MeS	CN	NHAc	NHBz	н	MeO	NH2	CONH2	CO2Me	Ph
$\mathrm{p}K_{\mathrm{a}}$	3.62	-0.26	4.09	3.33	5.23	3.28	6.86	2.10	2.21	4.48
Ref.	e	f	Ø	g	h	h	ź	j	k	l
		3. Ionizati	ion constants	of 2-substitut	ted pyridines	in 50% aque	ous ethanol a	t 25°		
х	н	Me	Et	<i>i</i> -Pr	t-Bu	I				
pK_a	4.38 m	5.05 m	4.93 m	4.82 m	4.68 m	1.11 n				
Ref.	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
		4.	Ionization co							
X	MeS	MeO	EtO	H	Me	CO2Me	NH2			
p <i>K</i> a Ref.	3.71 e	3.17 h	3.04	$rac{4}{p}$. 957	$\frac{5}{p}$.832	$rac{1}{q}$. 755	7.25			
Kel.							TT 0			
x	н	5. I MeS	onization con MeO	stants of 1-si NH2	instituted iso	quinolines in	н ₂ 0 at 20°			
pK_{a}	н 5.40	MeS 3.93	3.05	ΝH2 7.62						
Ref.	7.40	6 6	h	i .02						
	6. Rate	constants for	the reaction	of 2-substitut	ted pyridines	with methyl	iodide in nitre	obenzene at 2	5°	
х	C1	Br	н	Me	py					
10 6 k	2.04	1.1	340	160						
Ref.	8	8	8	i						
	7. Rate o	constants for	the reaction o	f 2-substitute	ed pyridines v	vith perbenzo	oic acid in niti	obenzene at 2	25°	
х		C1	Br	н	Me					
	ole^{-1} sec. $^{-1}$	0.027	$\begin{array}{c} 0.03 \\ t \end{array}$	4.80 8	8.40					
Ref.		•								
			onization cons							
X	H 5 op	3-MeS	3-CN	4-CN	3-MeO	4-MeO	3-NHAe	4-NHAe	3-NHBz	
p <i>K</i> ₅ Ref.	${5\atop _i}.23$	4.45 ¢	1.36 7	1.90 7	4.88 h	6.62	4.46 ø	5.87 ¢	3.80 ¢	
						4-trans-				
х	3-Ph	4-NHBz	4-Ph	4-PhC ₂		PhCH=CH			3-CONH	2
pK_{a}	$\frac{4}{l}$. 80	5.32 ¢	5.55 i	$\frac{4}{l}.62$		${5 \atop l}.92$			3 . 40 "	
Ref.						L			u	
X rV	4-CONH2 3.61	3-CO₂Me 3.26	3-NH₂ 5,98	4-C0₂Me 3.13	$4-NH_2$					
pK₄ Ref.	5.01 <i>i</i>	5.20 k	0.90 i	8.10 k	9.17					
		9. Io	nization const	ants of 3- or	4-substituted	auinolines i	n HaO at 25°			
х	н	3-MeS	4-MeO	3-Me	4-Me	3-Br	3-NO2	3-NH2	4-N H 8	
$\mathrm{p}K_{\mathrm{a}}$	4.882	3.88	6.65	5.092	5.597	2.69	1.03	4.86	9.08	
Ref.	p	e	v	р	р	w	w	i	4	
	1	0. Ionizatio	n constants of	3- or 4-subst	tituted quinol	ines in 10%	ethanol–water	at 25°		
х	н	3-F	3-Br	3-C1	4-C1	3-Me	4-Me			
$10^{12} K_{\rm b}$	493	2.3	3.2	2.3	26	190	2200			
Ref.	x	x	v	2	2	2	2			
			on constants o		ed quinolines	in 50% etha:	nol–water at 2	21-22°		
X	C1	н	OMe	NH₂						
p <i>K</i> a Ref.	2.59 ***	${f 5}_{aa}$	5.35	8.47 **						
NCI.										
v	ACNU		ization consta				in water at 20)- _		
\mathbf{x}	AcNH -0.42	BzNH -0.44	н 0.56	NH₂ 2.67	MeO 1.93	EtO				
pK_a Ref.	bb		0.00 cc	2.01 dd	1 . 23 dd	1 . 18 dd				
	13. Rate cor	istants for th	e reaction of s	- and 4-eube	tituted overide	nes with mot	hvl jodida in	nitrobenzeno	at 25°	
х	10. Nate COI	3-C1	4-Cl 3-B		H	3-Me 4-N		muobenzene	al 20	
	ole ⁻¹ sec. ⁻¹	3.0	7.3 3.4		34	71 76				
Ref.		8	8 8	8	3	8 8				

TABLE III (Continued)

14. Rate constants for the reaction of 3- or 4-substituted pyridines with perbenzoic acid in nitrobenzene at 25°

х	3-C1	4-C1	н	3-Me	4-Me
10 ³k, l . mole ⁻¹ sec. ⁻¹ Ref.		1.02 t			7.25

^a R. K. Murmann and F. Basolo, J. Am. Chem. Soc., **77**, 3486 (1955). ^b R. H. Linnell, J. Org. Chem., **25**, 2290 (1960). ^c H. C. Brown and D. H. McDaniel, J. Am. Chem. Soc., **77**, 3752 (1955). ^d H. C. Brown and X. R. Mihm, *ibid.*, **77**, 1723 (1955). ^e A. Albert and G. B. Barlin, J. Chem. Soc., 2384 (1959). ^f S. F. Mason, *ibid.*, 1251, 1247 (1959). ^g R. A. Jones and A. R. Katritzky, *ibid.*, 1317 (1959). ^h A. Albert and J. N. Phillips, *ibid.*, 1294 (1956). ⁱ A. Albert, R. J. Goldacre, and J. N. Phillips, *ibid.*, 2240 (1948). ^j J. H. G. Jellinek and J. R. Urwin, J. Phys. Chem., **58**, 548 (1954). ^k R. W. Green and H. K. Tong, J. Am. Chem. Soc., **78**, 4896 (1956). ^l A. R. Katritzky and P. Simnons, J. Chem. Soc., 1511, 1516 (1960). ^m H. C. Brown and B. Kanner, J. Am. Chem. Soc., **75**, 3865 (1953). ⁿ J. Holubek and J. Volke, Coll. Czech. Chem. Commun., **27**, 680 (1962). ^o I. Kabachnik, S. T. Ioffe, and Y. Sheinker, Chem. Abstr., **51**, 5077f (1957). ^p R. Riccardi and M. Bresesti, Ann. Chim., **49**, 1891 (1959). ^q C. D. Lumme, Suomen Kemi., **32B**, 151 (1959). ^r A. R. Osborn, K. Schofield, and L. N. Short, J. Chem. Soc., **4191** (1956). ^s G. Coppens, F. Declerck, C. Gillet, and J. Nasielski, Bull. soc. chim. Belges, **72**, 25 (1963). ^t A. Dondoni, G. Modena, and P. E. Todesco, Gazz. chim. *ital.*, 91, 605 (1961). ^w H. H. G. Jellinek and M. G. Wayne, J. Phys. Chem., **55**, 173 (1951). ^e G. F. Tucker and J. L. Irvin, J. Am. Chem. Soc., **73**, 1923 (1951). ^w A. Bryson, *ibid.*, **76**, 3780 (1954). ^z S. B. Knight, R. H. Wallick, and C. Balch, *ibid.*, **77**, 2577 (1955). ^{aa} A. Albert, J. Chem. Soc., 1356 (1949). ^{bb} R. A. Jones and A. R. Katritzky, *ibid.*, 2937 (1960). ^{ce} H. Hirayama and T. Kubota, J. Pharm. Soc. Japan, **75**, 1546 (1955). ^{dd} J. N. Gardner and A. R. Katritzky, J. Chem. Soc., 4375 (1957).

TABLE IV

RESULTS OF CORRELATION ^a							
Se	ries	ρ	r	5	t	Qн	n
1	I	-10.3	0.993	0.360	27.13	5.48	13
	m	-11.8	0.967	0.628	12.64	5.03	
	р	-9.82	.739	1.67	3.641	3.61	
2	Ι	-10.9	. 893	0.920	5.165	6.15	10
	m	-9.04	.972	.478	11.76	5.12	
	р	-4.64	.891	. 926	5.568	3.77	
3	I	-8.47	. 992	.214	15.67	4.43	6
	m	-8.69	. 989	.254	13.14	4.22	
	р	-8.09	. 956	. 495	6.536	3.62	
4	Ι	-10.1	. 804	1.22	3.028	5.92	7
	m	-10.40	.950	0.639	6.838	5 , 00	
	р	-4.14	.734	1.39	2.423	3.71	
5	Ι	-11.0	.672	1.81	1.282	6.64	4
	m	-13.7	. 960	0.684	4.855	5.36	
	р	-4.13	.645	1.87	1.194	4.04	
6	Ι	-4.45	.978	0.329	6.580	1.24	4
	m	-5.14	.974	.354	6.088	1.16	
	р	-5.84	. 889	.716	2.746	0.69	
7	Ι	-4.84	. 9999	.0255	92.18	0.68	4
	m	-5.60	.9981	. 103	22.79	0.60	
	р	-6.70	.957	. 481	4.687	0.11	
8		-5.70	.985	.315	23.58	5.39	20
9		-5.72	. 984	. 420	15.17	4.81	9
10		-5.15	. 974	. 304	9.592	2.37	7
11		-6.15	.972	.691	5.878	4.27	4
12	Ι	-4.02	. 400	1.20	0.8733	1.58	6
	m	-7.26	.879	0.627	3.688	1.38	
	р	-4.13	.960	.369	6.835	0.046	
13		-2.57	. 969	. 158	8.793	1.56	7
14		-2.23	. 981	. 114	8.708	0.60	5
		unalation a			atondand	domination	

a r = correlation coefficient, s = standard deviation, t = "student" t test, $Q_{\rm H}$ = intercept, and n = number of points in the series.

sent largely the field effect; that is, these σ_1 values were obtained from systems in which i/ϕ approaches zero. The short range electrostatic effect which accounts for the observed abnormal electrical effect we believe to be the inductive effect. The manner in which this effect operates may be pictured as

$$\sigma_{\rm i} = k\sigma_{\rm f} \tag{4}$$

$$\lambda \sigma_{\rm I} = (\phi + ik)\sigma_{\rm f} \tag{5}$$

In series in which the substituent and reaction site are separated by only one bond (other than the bond joining the substituent and the group G to which it and the reaction site are attached) ik will have a significant value; in other series the value of ik will approach zero. Now let us define the quantity

$$\epsilon = \delta / \lambda \tag{6}$$

Values of ϵ for various types of substituent constant are given in Table V.

	TABLE V					
	VALUES OF ϵ					
Substituent constant	é	Ref.				
σι	0	a				
$\sigma_{ m m}$	0.3-0.5	b, c				
$\sigma_{ m p}$	1	đ				
σ_0	1	е				

^a From eq. 2. ^b R. W. Taft, Jr., and I. C. Lewis, J. Am. Chem. Soc., **81**, 5343 (1959); J. L. Roberts and H. H. Jaffé, *ibid.*, **81**, 1635 (1959); H. Van Bekham, P. E. Verkane, and B. M. Wepster, *Rec. trav. chim.*, **78**, 815 (1959). ^c From the results of Bryson (ref. w in Table III), for the ionization of 3-substituted pyridines in water at 25°, ϵ 0.39; for the ionization of 3-substituted quinolines in water at 25°, ϵ 0.25; for the ionization of 4-substituted isoquinolines in water at 25°, ϵ 0.40. ^d By definition. ^e From eq. 1.

When the "inductive" effect represented by σ_{I} becomes significant, λ will include the term *ik* and ϵ for σ_{0} will decrease from the normal value of 1 to the abnormal value of 0.3 to 0.5 found for the reactions of *o*substituted pyridines, quinolines, and isoquinolines.

An important result of this investigation is that the ionization constants of 2-substituted pyridines cannot be used as a reference series for the normal electrical effect of *o*-substituents.